pengukuran berulang adalah pengukuran dimana untuk mendapatkan hasil (x ± Δx) satuan harus dilakukan beberapa kali pengukuran karena disetiap kali pengukuran memperoleh hasil yang berbeda.Pengukuran tunggal dan pengukuran berulang hasil ukurnya ditulis ke dalam bentuk (x ± Δx) dimana pada pengukuran tunggal nilai x merupakan angka pasti sebuah pengukuran dan Δx merupakan nilai ketidakpastiannya atau ralat. Sedangkan pada pengukuran berulang nilai x merupakan rata-rata perkiraan terbaik dari setiap pengulangan pengukuran dan Δx merupakan nilai ralat yang diperoleh dari nilai sebaran sekitar rata-rata atau standar deviasi.Ada beberapa sebab mengapa sebuah pengukuran dilakukan secara berulang-ulang antara lain
- Adanya kesulitan eksperimen dalam pengulangan pengukuran
- Besaran yang diukur bersifat fluktuatif (berubah-ubah)
- Adanya variasi dari medium pada saat eksperimen dilakukan
Nah disini kita dapat menentukan angka pastinya dengan cara mengambil sejumlah data yang kemudian diambil nilai rata-ratanya. Sedangkan nilai ketidakpastiannya dapat diambil dari nilai deviasinya.
Nilai rata-ratanya dapat kita tentukan menggunakan persamaan di bawah ini:
Keterangan:
N merupakan jumlah data sedangkan ni merupakan banyaknya data xi yang muncul.
Untuk nilai deviasinya dapat kita tentukan dengan persamaan akar kuadrat dari ragam rerata sampel (averaged sample variance), yakni
Kesalahan-Kesalahan dalam Pengukuran
Saat melakukan pengukuran suatu besaran fisika menggunakan alat, tidaklah mungkin Anda mendapatkan nilai yang pasti benar (xo), melainkan selalu terdapat ketidakpastian. Lalu apakah penyebab ketidakpastian pada hasil pengukuran tersebut?
Secara umum penyebab ketidakpastian hasil pengukuran ada 3, yaitu kesalahan umum, kesalahan sistematik dan kesalahan acak.
1. Kesalahan Umum
Kesalahan umum adalah kesalahan yang disebabkan keterbatasan pada pengamat saat melakukan pengukuran. Kesalahan ini dapat disebabkan karena kesalahan membaca skala kecil, dan kekurangterampilan dalam menyusun dan memakai alat ukur.
2. Kesalahan Sistematik
Kesalahan sistematik merupakan kesalahan yang disebabkan oleh alat yang digunakan dan atau lingkungan di sekitar alat yang memengaruhi kinerja alat. Misalnya, kesalahan kalibrasi, kesalahan titik nol, kesalahan komponen alat atau kerusakan alat, kesalahan paralaks, perubahan suhu, dan kelembaban.
- Kesalahan Kalibrasi
Kesalahan kalibrasi terjadi karena pemberian nilai skala pada saat pembuatan atau kalibrasi (standarisasi) tidak tepat. Hal ini mengakibatkan pembacaan hasil pengukuran menjadi lebih besar atau lebih kecil dari nilai sebenarnya. Kesalahan ini dapat diatasi dengan mengkalibrasi ulang alat menggunakan alat yang telah terstandarisasi.
- Kesalahan Titik Nol
Kesalahan titik nol terjadi karena titik nol skala pada alat yang digunakan tidak tepat berhimpit dengan jarum penunjuk atau jarum penunjuk yang tidak bisa kembali tepat pada skala nol. Akibatnya, hasil pengukuran dapat mengalami penambahan atau pengurangan sesuai dengan selisih dari skala nol semestinya. Kesalahan titik nol dapat diatasi dengan melakukan koreksi pada penulisan hasil pengukuran
- Kesalahan Komponen Alat
Kerusakan pada alat jelas sangat berpengaruh pada pembacaan alat ukur. Misalnya, pada neraca pegas. Jika pegas yang digunakan sudah lama dan aus, maka akan berpengaruh pada pengurangan konstanta pegas. Hal ini menjadikan jarum atau skala penunjuk tidak tepat pada angka nol yang membuat skala berikutnya bergeser.
- Kesalahan Paralaks
Kesalahan paralaks terjadi bila ada jarak antara jarum penunjuk dengan garis-garis skala dan posisi mata pengamat tidak tegak lurus dengan jarum.
3. Kesalahan Acak
Kesalahan acak adalah kesalahaan yang terjadi karena adanya fluktuasi-fluktuasi halus pada saat melakukan pengukuran. Kesalahan ini dapat disebabkan karena adanya gerak brown molekul udara, fluktuasi tegangan listrik, landasan bergetar, bising, dan radiasi.
- Gerak Brown Molekul Udara
Molekul udara seperti Anda ketahui keadaannya selalu bergerak secara tidak teratur. Gerak ini dapat mengalami fluktuasi yang sangat cepat dan menyebabkan jarum penunjuk yang sangat halus seperti pada mikrogalvanometer terganggu karena tumbukan dengan molekul udara.
- Fluktuasi Tegangan Listrik
Tegangan listrik PLN atau sumber tegangan lain seperti aki dan baterai selalu mengalami perubahan kecil yang tidak teratur dan cepat sehingga menghasilkan data pengukuran besaran listrik yang tidak konsisten.
- Landasan yang Bergetar
Getaran pada landasan tempat alat berada dapat berakibat pembacaan skala yang berbeda, terutama alat yang sensitif terhadap gerak. Alat seperti seismograf (alat untuk mengukur kekuatan gempa bumi) butuh tempat yang stabil dan tidak bergetar. Jika landasannya bergetar, maka akan berpengaruh pada penunjukkan skala pada saat terjadi gempa bumi.
- Bising
Bising merupakan gangguan yang selalu Anda jumpai pada alat elektronik. Gangguan ini dapat berupa fluktuasi yang cepat pada tegangan akibat dari komponen alat bersuhu.
- Radiasi Latar Belakang
Radiasi gelombang elektromagnetik dari kosmos (luar angkasa) dapat mengganggu pembacaan dan menganggu operasional alat. Misalnya, ponsel tidak boleh digunakan di SPBU dan pesawat karena bisa mengganggu alat ukur dalam SPBU atau pesawat.
Gangguan ini dikarenakan gelombang elektromagnetik pada telepon seluler dapat mengasilkan gelombang radiasi yang mengacaukan alat ukur pada SPBU atau pesawat.
Ketidakpastian dalam Pengukuran
Kesalahan-kesalahan dalam pengukuran di atas menyebabkan hasil pengukuran tidak bisa dipastika secara sempurna artinya selalu terdapat ketidakpastian dalam pengukuran. Dalam fisika, cara penulisan hasil pengukuran dituliskan sebagai berikut:
1. Ketidakpastian dalam Pengukuran Tunggal
Jika mengukur panjang meja dengan sebuah penggaris, kalian mungkin akan mengukurnya satu kali saja. Pengukuran yang kalian lakukan ini disebut pengukuran tunggal. Dalam pengukuran tunggal, pengganti nilai benar (x0) adalah nilai pengukuran itu sendiri.
Apabila Anda perhatikan, setiap alat ukur atau instrumen mempunyai skala yang berdekatan yang disebut skala terkecil. Nilai ketidakpastian (Δx) pada pengukuran tunggal diperhitungkan dari skala terkecil alat ukur yang dipakai. Nilai dari ketidakpastian pada pengukuran tunggal adalah setengah dari skala terkecil pada alat ukur.
2. Ketidakpastian dalam Pengukuran Berulang
Dalam praktikum fisika, terkadang pengukuran besaran tidak cukup jika hanya dilakukan satu kali. Ada kalanya kita mengukur besaran secara berulang-ulang. Ini dilakukan untuk mendapatkan nilai terbaik dari pengukuran tersebut.
Dalam pengukuran berulang, pengganti nilai benar adalah nilai rata-rata dari hasil pengukuran. Jika suatu besaran fisis diukur sebanyak N kali, maka nilai rata-rata dari pengukuran dan ketidakpastiannya dicari dengan rumus sebagai berikut.
3. Ketidakpastian Relatif
Pada pengukuran tunggal nilai ketidakpastiannya disebut ketidakpastian mutlak. Makin kecil ketidakpastian mutlak yang dicapai pada pengukuran tunggal, maka hasil pengukurannya pun makin mendekati kebenaran. Nilai ketidakpastian tersebut juga menentukan banyaknya angka yang boleh disertakan pada laporan hasil pengukuran.
Bagaimana cara menentukan banyaknya angka pada pengukuran berulang? Cara menentukan banyaknya angka yang boleh disertakan pada pengukuran berulang adalah dengan mencari ketidakpastian relatif pengukuran berulang tersebut. Ketidakpastian relatif dapat ditentukan dengan membagi ketidakpastian pengukuran dengan nilai rata-rata pengukuran. Secara matematis dapat ditulis sebagai berikut.
Setelah mengetahui ketidakpastian relatifnya, Anda dapat menggunakan aturan yang telah disepakati para ilmuwan untuk mencari banyaknya angka yang boleh disertakan dalam laporan hasil pengukuran berulang.
Aturan banyaknya angka yang dapat dilaporkan dalam pengukuran berulang adalah sebagai berikut.
- ketidakpastian relatif 10% berhak atas dua angka
- ketidakpastian relatif 1% berhak atas tiga angka
- ketidakpastian relatif 0,1% berhak atas empat angka
Contoh soal: